
Evolutionary Techniques in Physical Robotics

Jordan B. Pollack, Hod Lipson, Sevan Ficici, Pablo Funes, Greg Hornby, and

Richard A. Watson

Computer Science Dept., Brandeis University, Waltham, MA 02454, USA,

pollack@cs.brandeis.edu,

http://www.demo.cs.brandeis.edu

Abstract. Evolutionary and coevolutionary techniques have become a

popular area of research for those interested in automated design. One of

the cutting edge issues in this �eld is the ability to apply these techniques

to real physical systems with all the complexities and a�ordances that

such systems present. Here we present a selection of our work each of

which advances the richness of the evolutionary substrate in one or more

dimensions. We overview research in four areas: a) High part-count static

structures that are buildable, b) The use of commercial CAD/CAM sys-

tems as a simulated substrate, c) Dynamic electromechanical systems

with complex morphology that can be built automatically, and d) Evo-

lutionary techniques distributed in a physical population of robots.

1 Introduction

The �eld of Robotics today faces a practical problem: most problems in the

physical world are too diÆcult for the current state of the art. The diÆculties

associated with designing, building and controlling robots have led to a sta-

sis [1] and robots in industry are only applied to simple and highly repetitive

manufacturing tasks.

Even though sophisticated teleoperated machines with sensors and actuators

have found important applications (exploration of inaccessible environments for

example), they leave very little decision, if at all, to the on-board software [2].

Hopes for autonomous robotics were raised high several times in the past | the

early days of AI brought us Shakey the robot [3], and the eighties the \subsump-

tion architecture" [4]. Yet today, fully autonomous robots with minds of their

own are not a reality.

The central issue we begin to address is how to get a higher level of complex

physicality under control with less human design cost. We seek more controlled

and moving mechanical parts, more sensors, more nonlinear interacting degrees

of freedom | without entailing both the huge costs of human design, program-

ming, manufacture and operation. We suggest that this can be achieved only

when robot design and construction are fully automatic and the constructions

inexpensive enough to be disposable and/or recyclable.

The focus of our research is thus how to automate the integrated design of

bodies and brains using a coevolutionary learning approach. Brain/body coevo-



lution is a popular idea, but evolution of robot bodies is usually restricted to ad-

justing a few morphological parameters in an otherwise �xed, human-engineered

automaton [5{7]. We propose that the key is to evolve both the brain and the

body, simultaneously and continuously, from a simple controllable mechanism

to one of suÆcient complexity for a task. We then require a replication process,

that brings an exact copy of the evolved machine into reality. Finally, the trans-

fer between a simulated environment and reality | the \reality gap" | needs

further embodied adaptation.

We see three technologies that are maturing past threshold to make this

possible. One is the increasing �delity of advanced mechanical design simulation,

stimulated by pro�ts from successful software competition [8]. The second is

rapid, one-o� prototyping and manufacture, which is proceeding from 3D plastic

layering to stronger composite and metal (sintering) technology [9]. The third is

our understanding of coevolutionary machine learning in design and intelligent

control of complex systems [10{12].

2 Coevolution

Coevolution, when successful, dynamically creates a series of learning environ-

ments each slightly more complex than the last, and a series of learners which

are tuned to adapt in those environments. Sims' work [13] on body-brain co-

evolution and the more recent Framsticks simulator [14] demonstrated that the

neural controllers and simulated bodies could be coevolved. The goal of our

research in coevolutionary robotics is to replicate and extend results from vir-

tual simulations like these to the reality of computer designed and constructed

special-purpose machines that can adapt to real environments.

We are working on coevolutionary algorithms to develop control programs

operating realistic physical device simulators, both commercial-o�-the-shelf and

our own custom simulators, where we �nish the evolution inside real embodied

robots. We are ultimately interested in mechanical structures that have com-

plex physicality of more degrees of freedom than anything that has ever been

controlled by human designed algorithms, with lower engineering costs than cur-

rently possible because of minimal human design involvement in the product.

It is not feasible that controllers for complete structures could be evolved (in

simulation or otherwise) without �rst evolving controllers for simpler construc-

tions. Compared to the traditional form of evolutionary robotics [15{19] which

serially downloads controllers into a piece of hardware, it is relatively easy to

explore the space of body constructions in simulation. Realistic simulation is

also crucial for providing a rich and nonlinear universe. However, while simu-

lation creates the ability to explore the space of constructions far faster than

real-world building and evaluation could, transfer to real constructions is prob-

lematic. Because of the complex emergent interactions between a machine and

its environment, learning and readaptation must occur in \embodied" form as

well [20{22].



3 Research Thrusts

We have four major thrusts in achieving Fully Automated Design (FAD) and

manufacture of high-parts-count autonomous robots. The �rst is evolution in-

side simulation, but in simulations more and more realistic so the results are

not simply visually believable, as in Sims' work, but also tie into manufacturing

processes. Indeed, interfacing evolutionary computation systems to commercial

o�-the-shelf CAD/CAM systems through developer interfaces to mechanical sim-

ulation programs seems as restrictive as developing programming languages for

8K memory microcomputers in the middle 1970's. However, even though the

current mechanical simulation packages are \advisory" rather than blue-print

generating, and are less eÆcient than research code, as computer power grows

and computer-integrated manufacturing expands, these highly capitalized soft-

ware products will absorb and surpass research code, and moreover will stay cur-

rent with the emerging interfaces to future digital factories. The second thrust is

to evolve automatically-buildable machines, using custom simulation programs.

Here, we are willing to reduce the universe of mechanisms we are working with in

order to increase the �delity and eÆciency of the simulators and reduce the cost

of building resulting machines. The third is to perform evolution directly inside

real hardware, which escapes the known limitations of simulation and de�nes a

technology supporting the �nal learning in embodied form. This is perhaps the

hardest task because of the power, communication and other reality constraints.

The fourth thrust addresses handling high part-count structures with realisti-

cally complexity. We have preliminary and promising results in each of these

four areas, which we outline below.

3.1 Evolution in Simulation

We have been doing evolution of neural-network controllers inside realistic CAD

simulations as a prelude to doing body recon�guration and coevolution. Our

lab is using CAD/CAM software package that comprises a feature based solid-

modeling system 1. Widely used in industry, it includes a mechanical simulation

component that can simulate the function of real-world mechanisms, including

gears, latches, cams and stops. This program has a fully articulated develop-

ment interface to the C programming language, which we have used in order to

interface its models to our evolutionary recurrent neural network software.

To date, we have used this system with evolved recurrent neural controllers

for one and two segment inverted pendulums and for Luxo (an animated lamp

creature, �gure 1). Many researchers have evolved such controllers in simulation,

but no one has continuously deformed the simulation and brought the evolved

controllers along, and no one else has achieved neural control inside commer-

cial simulations. We believe this should lead to easy replication, extension, and

transfer of our work.

1
Parametric Technology Corporation's Pro/Engineer.



We have successful initial experiments consisting of evolving recurrent neu-

ral network controllers for the double-pole balancing problem, where we slowly

\morphed" the body simulator by simulating a sti� spring at the joint connecting

the two poles and relaxing its sti�ness.

(a) (b)

Fig. 1. Commercial CAD models for which we evolved recurrent neural net controllers:

(a) a two-segment inverted pendulum (b) A Luxo lamp.

Some of the ways to achieve continuous body deformation are:

� New links can be introduced with \no-op" control elements.

� The mass of new links can initially be very small and then incremented.

� The range of a joint can be small and then given greater freedom.

� A spring can be simulated at a joint and the spring constant relaxed.

� Gravity and other external load forces can be simulated lightly and then

increased.

3.2 Buildable Simulation

Commercial CAD models are in fact not constrained enough to be buildable,

because they assume a human provides numerous constraints to describe reality.

In order to evolve both the morphology and behavior of autonomous mechan-

ical devices that can be built, one must have a simulator that operates under

many constraints, and a resultant controller that is adaptive enough to cover the

gap between the simulated and real world. Features of a simulator for evolving

morphology are:

� Representation |- should cover a universal space of mechanisms.

� Conservative | because simulation is never perfect, it should preserve a

margin of safety.

� EÆcient | it should be quicker to test in simulation than through physical

production and test.



� Buildable | results should be convertible from a simulation to a real object.

One approach is to custom-build a simulator for modular robotic components,

and then evolve either centralized or distributed controllers for them. In advance

of a modular simulator with dynamics, we recently built a simulator for (static)

Lego bricks, and used very simple evolutionary algorithms to create complex

Lego structures, which were then manually constructed [23{25].

Our model considers the union between two bricks as a rigid joint between

the centers of mass of each one, located at the center of the actual area of contact

between them. This joint has a measurable torque capacity. That is, more than a

certain amount of force applied at a certain distance from the joint will break the

two bricks apart. The fundamental assumption of our model is this idealization

of the union of two Lego bricks.

Fig. 2. Photographs of the FAD Lego Bridge (Cantilever) and Crane (Triangle). Pho-

tographs copyright Pablo Funes & Jordan Pollack, used by permission.

The genetic algorithm reliably builds structures that meet simple �tness

goals, exploiting physical properties implicit in the simulation. Building the

results of the evolutionary simulation (by hand) demonstrated the power and

possibility of fully automated design. The long bridge of �gure 2 shows that our

simple system discovered the cantilever, while the weight-carrying crane shows

it discovered the basic triangular support.

3.3 Evolution and construction of electromechanical systems

The next step is to add dynamics to modular buildable physical components.

We are experimenting with a new process in which both robot morphology and

control evolve in simulation and then replicate automatically into reality. The

robots are comprised of only linear actuators and sigmoidal control neurons em-

bodied in an arbitrary thermoplastic body. The entire con�guration is evolved

for a particular task and selected individuals are printed pre-assembled (except



motors) using 3D solid printing (rapid prototyping) technology, later to be recy-

cled into di�erent forms. In doing so, we establish for the �rst time a complete

physical evolution cycle. In this project, the evolutionary design approach as-

sumes two main principles: (a) to minimize inductive bias, we must strive to use

the lowest level building blocks possible, and (b) we coevolve the body and the

control, so that that they stimulate and constrain each other.

We use arbitrary networks of linear actuators and bars for the morphology,

and arbitrary networks of sigmoidal neurons for the control. Evolution is simu-

lated starting with a soup of disconnected elements and continues over hundreds

of generations of hundreds of machines, until creatures that are suÆciently pro-

�cient at the given task emerge. The simulator used in this research is based on

quasi-static motion. The basic principle is that motion is broken down into a se-

ries of statically-stable frames solved independently. While quasi-static motion

cannot describe high-momentum behavior such as jumping, it can accurately

and rapidly simulate low-momentum motion. This kind of motion is suÆciently

rich for the purpose of the experiment and, moreover, it is simple to induce in

reality since all real-time control issues are eliminated [26, 27].

Several evolution runs were carried out for the task of locomotion. Fitness

was awarded to machines according to the absolute average distance traveled

over a speci�ed period of neural activation. The evolved robots exhibited var-

ious methods of locomotion, including crawling, ratcheting and some forms of

pedalism.

Selected robots are then replicated into reality: their bodies are �rst 
eshed

to accommodate motors and joints, and then copied into material using rapid

prototyping technology. Temperature-controlled print head extrudes thermoplas-

tic material layer by layer, so that the arbitrarily evolved morphology emerges

pre-assembled as a solid three- dimensional structure without tooling or human

intervention. Motors are then snapped in, and the evolved neural network is ac-

tivated (�gure 4). The robots then perform in reality as they did in simulation.

3.4 Embodied Evolution

Once a robot is built, it may well be necessary to \�ne-tune" adaptation in the

real world. Our approach is to perform adaptation via a decentralized evolution-

ary algorithm that is distributed and embodied within a population of robots.

The distributed and asynchronous operation of this evolutionary method allows

the potential for being scaled to very large populations of robots, on the or-

der of hundreds or thousands, thus enabling speedup that is critical when using

evolution in real robots.

Technologically, this introduces two main problems: long-term power and re-

programming [28,29]. Many robots' batteries last only for a few hours, and robots

typically have to be attached to a PC for new programs to be uploaded. In order

to do large group robot learning experiments, we have designed a continuous-

power 
oor system, and utilized infra-red (IR) communications to transfer pro-

grams between robots. We are thus able to run a population of learning robots

battery-free and wire-free for days at a time (�gure 5). Evolution is not directed



(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) A tetrahedral mechanism that produces hinge-like motion and advances by

pushing the central bar against the 
oor. (b) Bi-pedalism: the left and right limbs are

advanced in alternating thrusts. (c) Moves its two articulated components to produce

crab-like sideways motion. (d) While the upper two limbs push, the central body is

retracted, and vice versa. (e) This simple mechanism uses the top bar to delicately

shift balance from side to side, shifting the friction point to either side as it creates

oscillatory motion and advances. (f) This mechanism has an elevated body, from which

it pushes an actuator down directly onto the 
oor to create ratcheting motion. It has

a few redundant bars dragged on the 
oor.

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Fleshed joints, (b) replication progress, (c) pre-assembled robot (�gure 3f),

(d,e,f) �nal robots with assembled motors



by a central o�-board computer that installs new programs to try out, but rather

is distributed into the behavior of all the robots. The robots exchange program

speci�cations with each other and this \culture" is used to 'reproduce' the more

successful behaviors and achievement of local goals.

(a) (b)

Fig. 5. 4" diameter robot picks up power from its environment and learns while on-line.

The control architecture is a simple neural network and the speci�cations for

it are evolved online. Each robot tries parameters for the network and evaluates

its own success. The more successful a robot is at the task, the more frequently

it will broadcast its network speci�cations via its local-range IR communications

channel. If another robot happens to be in range of the broadcast, it will adopt

the broadcast value with a probability inversely related to its own success rate.

Thus, successful robots attempt to in
uence others, and resist the in
uence of

others, more frequently than less successful robots. We have shown this paradigm

to be robust both in simulation and in real robots, allowing for the parallel, asyn-

chronous evolution of large populations of robots with automatically developed

controllers. These controllers compare favorably to human designs, and often

surpass them when human designs fail to take all important environmental fac-

tors into account. Figure 6 shows averaged runs of the robots in a light seeking

task, comparing evolved controllers to random and human-designed ones.

Our research goals in this area involve group interactive tasks based on multi-

agent systems, such as group pursuit and evasion, box pushing, and team games.

These domains have been out of reach of traditional evolutionary methods and

typically are approached with hand-built (non-learning) controller architectures

[30{33]. Work that does involve learning typically occurs in simulation [34{37],

or in relatively simple physical domains [38{42].

4 Conclusion

Can evolutionary and coevolutionary techniques be applied to real physical sys-

tems? In this paper we have presented a selection of our work each of which

addresses physical evolutionary substrate in one or more dimensions. We have
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Fig. 6. Averaged runs of robots in a \light gathering" task, with various controllers.

overviewed research in handling high part-count static structures that are build-

able, use of commercial CAD/CAM systems as a realistic simulated substrate,

dynamic electromechanical systems with complex morphology that can be built

automatically, and evolutionary techniques distributed in a physical population

of robots.

Our long-term vision is that both the morphology and control programs for

self-assembling robots arise directly through hardware and software coevolu-

tion: primitive active structures that crawl over each other, attach and detach,

and accept temporary employment as supportive elements in \corporate" beings

can accomplish a variety of tasks, if enough design intelligence is captured to

allow true self-con�guration rather than human re-deployment and reprogram-

ming. When tasks cannot be solved with current parts, new elements are created

through fully automatic design and rapid prototype manufacturing.

Our current research moves towards the overall goal down multiple interact-

ing paths, where what we learn in one thrust aids the others. We envision the

improvement of our hardware-based evolution structures, expanding focus from

static buildable structures and unconnected groups to recon�gurable active sys-

tems governed by a central controller, and then the subsequent parallelization

of the control concepts. We see a path from evolution inside CAD/CAM and

buildable simulation, to rapid automatic construction of novel controlled mech-

anisms, from control in simulation to control in real systems, and �nally from

embodied evolution of individuals to the evolution of heterogeneous groups that

learn by working together symbiotically. We believe such a broad program is

the best way to ultimately construct complex autonomous robots who are self-

organizing and self-con�guring corporate assemblages of simpler automatically

manufactured parts.
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